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Interpreting Inertial Fusion Neutron Spectra

David H. Munro∗
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808

A burning laser fusion plasma produces a neutron spectrum first described by Brysk[1]. This and
more recent work deals with the spectrum produced by a single fluid element. The distribution
of temperatures and velocities in multiple fluid elements combine in any real spectrum; we derive
formulas for how the neutron spectrum averages these contributions. The single element momentum
spectrum is accurately Gaussian, but the multi-element spectrum exhibits higher moments. In
particular, the skew and kurtosis are likely to be large enough to measure. Even the single fluid
element spectrum may exhibit measurable directional anisotropy, so that instruments with different
lines of sight should see different yields, mean velocities, mean temperatures, and higher moments.
Finally, we briefly discuss how scattering in the imploded core modifies the neutron spectrum by
changing the relative weighting of fuel regions with different temperatures and velocities.

I. INTRODUCTION

Arguably the most important diagnostic of conditions in the burning core of an inertial fusion implosion is the
spectrum of DT neutrons. We interpret neutron peak width as the mean ion temperature of the burn, and the energy
shift of the peak as the mean fluid velocity of the burning fuel. In this work we address the question, "How much
information beyond temperature and mean velocity we might be able to extract from finer details of the peak shape?"
Features of the neutron spectrum besides the DT peak at 14 MeV and the DD peak at 2.45 MeV are also useful (for
example, the number of down-scattered neutrons is diagnostic of the areal density of cold fuel), but here we only
discuss peak shape.

At the National Ignition Facility (NIF), we field an array of nTOF (neutron time of flight) spectrometers[2–5] and
one MRS (magnetic recoil spectrometer)[6], sampling the neutron spectrum along very different lines of sight. The
precision of these NIF neutron spectrometers is better than the approximations Brysk[1] makes in his 1972 paper.
Ballabio[7] and Appelbe[8, 9] have provided more accurate formulas. Beyond those corrections, we sometimes observe
significant variations in spectral shape with line of sight, as well as deviations from the Gaussian peak shape described
by Brysk. We will derive formulas for interpreting such observations in terms of inhomogeneities, fluid velocity
anisotropies, and correlations between fluid velocity and temperature in the burning fuel.

The shape of a neutron spectral peak is nearly a copy of the distribution of the center of mass (CM) velocities
of the reacting ion pairs, or more precisely, the component of the CM velocity along the detector line of sight.
Ultimately, therefore, the CM velocity distribution is the most we can learn from the peak shape. This CM velocity
distribution carries no information about ordinary space, so neutron peak spectroscopy cannot measure anything
related to position. In particular, neither shear, nor rotation, nor turbulence[10] (eddy scales) has any unique signature
in the CM velocity distribution. More importantly, density in velocity space does not distinguish the thermal and bulk
motion contributions to the CM velocity. Thus, peak width is only an “effective” ion temperature indicator, which
includes both mean temperature and variance in fluid velocity component along the line of sight. With multiple lines
of sight, we can distinguish the anisotropic part of the fluid velocity distribution, but the mean temperature and
isotropic part of the velocity variance remain inextricably mixed.

The distribution of temperature and fluid velocity, that is, the number of neutrons produced in fluid elements in
each bin in 4D (T,u) space is very broad for imploded cores, typically spanning at least a factor of two in temperature
and hundreds of km/s in fluid velocity. (“Stagnation” is a misnomer in real implosions.) These distributions dominate
the detailed features of the peak shape. We develop relations between moments of the spectral peak and moments
of the underlying (T,u) distribution, which reduce to the formulas for single fluid element spectral shape derived in
previous work.

Scattering changes the spectrum by filtering the (T,u) distribution from neutrons born to neutrons detected. This
re-weighting of the contributions of the various fluid elements can be significant, especially for DD. The intuition
that DD and DT neutrons come from the same fluid elements may be misleading when the DD neutrons we detect
come from fluid elements closer to our detectors than the detected DT neutrons. Ideas to disentangle thermodynamic
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temperature from fluid velocity variance, such as by comparing the widths of the DT and DD peaks, will be seriously
compromised by scattering.

In addition to the formulas for spectral peak shape, we also provide numerical values for the various constants and
fits to the reaction cross sections that appear in our formulas.

II. NEUTRON SPECTRUM FROM A SINGLE FLUID ELEMENT

Consider first a single element of burning plasma, limited to, say, a micron in size and a picosecond in time. This
fluid element has a single ion temperature T and a single fluid velocity u. We want the neutron spectrum in any given
direction Ω, that is, the fraction of neutrons produced with a given lab frame momentum p, within some momentum
volume d3p. In the following section, we will add up the spectra produced by all such elements.

We work in c = k = 1 units, so that mass, kinetic energy, and temperature all have energy units, and velocity is
unit-less.

A. Single reaction kinematics

We begin with the kinematics of a single DT (DDn) reaction, D+T→4He+n (D+D→3He+n). To zeroth order, the
neutron flies off with kinetic energy K0 equal to the mass difference between reactants and products, roughly 14 MeV
(2.45 MeV), corresponding to a velocity of c/6 (c/14). This neutron speed is high enough that relativistic corrections
are about 3% (0.5%).

In the CM frame of two particles, E = M +K is the total energy, where K = K1 +K2 is the sum of kinetic energies
of the two particles and M = m1 + m2 is the sum of their masses. In the CM frame, the individual kinetic energies
are in the ratio of the particle masses, augmented by half the total kinetic energy:

(m1 +K/2)K1 = (m2 +K/2)K2.

Hence the fraction of the total kinetic energy and corresponding momentum belonging to particle 1 are:

K1 = (m2 +K/2)K/E, (1)

p21 = (2m1 +K1)K1

= (2M +K)K (m1 +K/2)(m2 +K/2)/E2. (2)

On the product side of the reaction, the total mass-energy E is unchanged, but the mass defect Q between products
and reactants means that the CM kinetic energy on the product side is Q + K, very much larger than the incident
kinetic energy K. According to Eq.(1), the neutron gets

Kn = (mHe + (Q+K)/2) (Q+K)/E. (3)

We have already defined the neutron energy K0 = Kn at K = 0; now we have the expression to compute it. We will
write En = mn +Kn for the total reaction CM frame neutron energy, E0 = mn +K0 for the total neutron energy at
K = 0. We also define pn and vn = pn/En to be the CM neutron momentum and velocity, respectively, corresponding
to Kn, with p0 and v0 as their K = 0 counterparts. The K (or E) derivatives of the neutron properties are:

dEn/dK = dKn/dK = 1− En/E, (4)

dvn/dK = (1− v2n)(1− En/E)/pn (5)

The energy of a neutron born in a fusion plasma differs from K0 by far more than Eq.(3) suggests. The thermal
motion responsible for the relative kinetic energy K of the reactants also creates a CM velocity v of any reactant pair,
distributed as a Maxwellian with a variance T/M in each component. Boosting pn by velocity v produces

K ′n = γ(Kn + v · pn) + (γ − 1)mn. (6)

The big energy shift from this boost is the v · pn term in Eq.(6), which selects the component of pn along the boost
direction. The fractional change in neutron kinetic energy from the boost is vpn/Kn ∼ 2v/v0, while the fractional
change from the relative kinetic energy Eq.(3) is only K/Q. For example, in a 5 keV plasma, 2v/v0 ∼ 0.012, while a
typical DT reaction happens at ∼ 5T where K/Q ∼ 0.0014. Therefore, for the most part, a thermonuclear neutron
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mn (MeV) 939.565379(21)
D+T → α+n D+D → 3He+n

K0 (MeV) 14.0283920(15) 2.4486857(13)
v0 (km/s) 51233.5921(27) 21601.8587(58)
M (MeV) 4684.53386(11) 3751.225718(85)
M−1/2 (km/s/keV1/2) 138.512035(16) 154.786865(17)
(1− E0/M)/p0 (km/s/keV) 1.465126376(84) 3.25390044(88)

Table I: Neutron spectrum parameters for the DT and DD reactions from CODATA 2010, with uncertainties in parentheses.
M−1/2 is the conversion from T 1/2 to standard deviation of velocity. (1 − E0/M)/p0 is the conversion from K to our scaled
momentum ω of Eq.(12).

spectrum records the distribution of the component of CM velocity along the viewing direction. We will consider the
shift due to relative kinetic energy K to be a small correction to the boost by the CM velocity v.

The boost transform of neutron momentum and energy Eq.(6) occurs several times in our analysis. The three
most important reference frames are the individual reaction CM (unprimed symbols), the fluid rest frame (primed
symbols), and the lab frame (double primed). The boost transform from CM to fluid frame is

E′n = γ(En + v · pn) (7)
p′n‖ = γ(pn‖ + vEn) (8)

p′n⊥ = pn⊥,

where the ‖-direction is parallel to v, and ⊥ is either perpendicular direction. The case that the neutron motion pn
is parallel to the boost velocity v turns out to be particularly important; for this special case the familiar collinear
relativistic velocity addition formula applies:

v′n = (vn + v)/(1 + vnv) ≈ vn + (1− v2n)v. (9)

Note that the neutron velocity vn is high enough that classical velocity addition vn + v is wrong by a few percent
even when the boost velocity v is small.

Later, we will need to find the boost velocity v which transforms a CM momentum pn to a particular momentum
p′n in the boosted frame. The easiest way to derive this relationship is to subtract the forward transform Eq.(7) and
Eq.(8) from its inverse (which is the same with minus signs and primes swapped), leading to

γv/(γ + 1) = (p′n − pn)/(E′n + En). (10)

Squaring produces an expression for the γ − 1 associated with the boost in terms of the neutron momenta in the two
frames, which will become central to our analysis:

γ − 1 =
(p′n − pn)2

E′nEn +m2
n + p′n · pn

. (11)

For numerical work, we present the single reaction values that will appear in our results in Table I.
When we look at a neutron spectral peak, we are (for the most part) reading the distribution of the component

of CM velocity along our line of sight. We propose to take this quite literally and use velocity as the independent
variable for our neutron spectra rather than energy. However, if we were to use neutron velocity directly, the (1− v2n)
factor in Eq.(9) would require us to dilate our spectral scale slightly. To mitigate this effect of relativistic velocity
addition, we will work with neutron momentum spectra, scaled to units of velocity by a factor of E0. Differences in
this scaled momentum are a very good surrogate for the underlying reactant CM velocity differences. From Eq.(8),
the scaled momentum difference (p′n‖−pn‖)/E0 much more nearly equals v than the actual velocity difference v′n−vn.
We will show that the neutron momentum spectrum distorts the shape of the CM velocity distribution of reacting
pairs by less than the neutron velocity spectrum, and by far less than the neutron energy spectrum.

Since the zero order effect of the boost is to shift the centroid of the CM velocity spectrum from zero (in the fluid
rest frame) to roughly v0, we will also shift our velocity scale by v0, so that we will write neutron momentum spectra
in terms of the shifted and scaled neutron momentum variable

ω = p′′n/E0 − v0. (12)

(Again, the double prime frame is the lab frame of our spectrometer.) We can think of ω as the part of the neutron
velocity due to the line-of-sight component of the CM velocity of the reactants which produced it, to the extent that
any quantity independent of K can represent that CM velocity.
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B. Thermal distribution of reactants

We assume the reactant ions are an ideal gas, so that their density of states is proportional to the momentum-volume
d3p′1, and the occupation fraction is exp(−K ′1/T ), where K ′1 is the kinetic energy corresponding to the momentum
p′1. We use a prime to distinguish the fluid rest frame from the CM frame of an individual reaction from previous
section. For relativistic K ′1, this is the Maxwell-Jüttner distribution, which captures the onset of relativistic deviations
from the Maxwell-Boltzmann distribution.

No practical fusion plasma has high enough temperature for any significant relativistic deviations from Maxwell-
Boltzmann statistics. However, Appelbe[9] has demonstrated that the algebra of Maxwell-Jüttner statistics is almost
equally amenable to deriving analytic formulas. Eventually, we will expand in powers of v/c and v/v0 and discard
small terms, but by preserving a full relativistic treatment to the end, we can see exactly what we are throwing away.

Owing to the fact that volume, hence particle density, is not Lorentz invariant, the relativistic density of states is
a much more subtle concept than in non-relativistic statistical mechanics. The problem is that all the particles with
a particular momentum p′2 have their own rest frame, different from the rest frame of the fluid. Hence, their density
in their own rest frame differs from their density in the fluid rest frame. It is the density in the fluid rest frame to
which the Maxwell-Jüttner distribution applies:

dn′2 = NJ2n
′
2d

3p′2 exp(−K ′2/T ), (13)

where NJ is the normalization factor to make
´
dn′2 = n′2. In the rest frame of the particles, which we denote by

a star superscript, the density of particles with momentum p′2 is lower, namely dn∗2 = dn′2/γ
∗
2 , where γ∗2 = E′2/m2

corresponds to velocity v∗2 = p′2/E
′
2.

How many reactions take place per unit volume per unit time at one momentum pair relative to any other? The
answer is the ratio of reaction rates at the two momentum pairs. Unlike particle density, reaction rate per unit volume,
or number of reactions per 4-volume, is Lorentz invariant, so it is the same in the rest frame of the subset of particles
with a given velocity as in the fluid rest frame. Reaction cross sections are often tabulated as a function of the kinetic
energy K∗1 of a projectile (particle 1) in the rest frame of a target (particle 2), so the rate is:

dṅ = dn∗1dn
∗
2 v
∗
1σ(K∗1 ) (14)

(When 1 and 2 are identical, as in DD, this rate double counts reactions, so there is an additional factor of 1/2.) Here
dn∗1 is density of projectiles 1 in the rest frame of the target particle 2. This is related to dn′1 by the ratio of two
gamma factors, E′1/m1 for the transformation from the rest frame of 1 to the fluid rest frame, and γ∗1 to get from the
rest frame of 1 to the rest frame of 2. Hence

dṅ = dn′1dn
′
2

m2p
∗
1

E′1E
′
2

σ(K∗1 ), (15)

where the momentum p∗1 = m1γ
∗
1v
∗
1 of particle 1 in the rest frame of 2 corresponds to the kinetic energy K∗1 (and we

again omit a factor of 1/2 for DD).
By combining the Maxwell-Jüttner distributions of the reactants Eq.(13) and the reaction rate Eq.(15), we arrive

at the relative probability of a reaction with any pair of reactant momenta p′1 and p′2:

dP (p′1,p
′
2) ∝ n′1n′2

d3p′1
E′1

d3p′2
E′2

m2p
∗
1σ(K∗1 ) exp (−(K ′1 +K ′2)/T ) , (16)

where the constant of proportionality is NJ1NJ2.
In order to apply the lessons we learned from our analysis of the single reaction, we must rewrite this relative

probability in terms of the CM velocity v in the fluid rest frame (and its corresponding γ), and the total kinetic
energy K in the CM frame. (We should write v′ and γ′ to indicate they are in the fluid rest frame, but we omit the
primes in this case. Note that −v is the velocity of the fluid rest frame in the CM frame.) A more convenient variable
for many of our purposes is the spacelike component of the CM 4-velocity (γ, γv),

w = γv = γ(p1 + p2)/(E1 + E2). (17)

We begin with the Lorentz invariance of the combination

d3p

E
= 2δ

(
E2 − p2 −m2

)
dEd3p, (18)
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which applies to any 4-vector whose Lorentz-invariant m2 remains constant while its space-like part p varies. Thus,

d3p′1
E′1

d3p′2
E′2

=
d3p1

E1

d3p2

E2
(19)

In this expression, d3pj represents the differential volume element around the CM frame momentum pj ; it is not
quite the CM frame throughout the volume element. In that spirit, we transform to sum and difference momentum
coordinates in that CM frame:

p = p1 + p2

p− = (p1 − p2)/2 (20)

This transform has unit Jacobian. A fixed value of the CM frame momentum difference p− corresponds to a fixed
CM total energy, in other words a fixed mass-energy E for the reactant pair. In the CM frame, when E is fixed
small changes in velocity (to slightly out of the CM frame) are related to the small changes in total momentum
by dp = Edvcm. Therefore, in the CM frame, d3p = E3d3vcm. For infinitessimal dvcm have γcm = 1, so that
d3vcm = d3wcm/γcm. Since Eq.(18) applies to the 4-velocity, we can transform from the CM frame back to the fluid
frame with d3wcm/γcm = d3w/γ, so that

d3p′1
E′1

d3p′2
E′2

=
E3

E1E2

d3w

γ
d3p−. (21)

To express d3p− = p2−dp−dΩ in terms of K, we use p−dp− = E1dK1 = E2dK2 to write

p−dp− =
E1E2

E
dK.

We must also express the momentum and kinetic energy of particle 1 in the rest frame of 2, p∗1 and K∗1 , in
terms of the total relative kinetic energy in the CM frame. Consider the Lorentz invariant E1E2 − p1 · p2, which
is m2E

∗
1 in the rest frame of 2, and E1E2 + p2− in the CM frame. In the CM frame, we also have the identity

(E2 −M2)/2 = E1E2 + p2− −m1m2, so that

m2K
∗
1 = (M +K/2)K. (22)

For the momentum, a Lorentz transform from the CM frame to the rest frame of 2 has velocity v2 = −p−/E2 with
γ2 = E2/m2, so that p∗1 = γ2p−(1 + E1/E2), or

m2p
∗
1 = Ep−.

Finally, since E′ = γE, we can rewrite the exponent in Eq.(16) to show its dependence on v (or γ) and K explicitly:

K ′1 +K ′2 = (γ − 1)M + γK = (γ − 1)E +K

Putting all this together, we arrive at the relative probability for a reaction to occur with CM 4-velocity w, total
kinetic energy in the CM frame K, and direction Ω of the incident reactants in the CM frame (the direction of p−):

dP (w,K,Ω) = dPcm(w,K) dPrel(K,Ω), where (23)

dPcm ∝ (d3w/γ) exp (−(γ − 1)E/T )

dPrel ∝ dK dΩE3p2−σ(K∗1 ) exp (−K/T ) .

Eq.(22) expresses the energy at which the cross section σ is to be evaluated in terms of K, and the total energy
E = M +K. Eq.(2) gives p− = p1 as a function of K. We factor this probability into a part dPrel depending only on
the relative velocity and a part that depends on the CM velocity with only a very weak dependence on the relative
kinetic energy K. In the non-relativistic limit dPcm is independent of K; the only K-dependence comes from the very
small (γ − 1)K/T term in the exponent.

The normalization integral for dPcm (and similar integrals we need later) is an integral representation of modified
Bessel functions of the second kind[11], Kν . For any practical temperature T � E, the asymptotic series for these
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functions converges rapidly:

ezKν(z) =
zν

(2ν − 1)!!

ˆ ∞
1

dγ (γ2 − 1)ν−1/2 exp (−(γ − 1)z) , (24)

=

√
π

2z

[
1 +

∞∑
i=1

∏i
j=1(4ν2 − (2j − 1)2)

i!(8z)i

]
, (25)

=

√
π

2z
Nν(z). (26)

(For ν = 0, (2ν − 1)!! = 1.)
The normalization factor NJ for the the Maxwell-Jüttner distribution Eq.(13) reduces to Eq.(24) with ν = 2, so

that

NJ = (2πmT )3/2N2(m/T ).

For our dPcm distribution, z = E/T is larger than 105 for any T less than 50 keV (40 keV for DD), so the
normalization series Nν(E/T ) is very nearly unity for any ν. Since γdγ = wdw, d3w/γ = 4π(γ2 − 1)1/2dγ, which is
Eq.(24) with ν = 1. Thus, the normalized w distribution for a given K is

dPcm =
d3w

γ

exp (−(γ − 1)E/T )

(2πT/E)3/2N1(E/T )
. (27)

The normalization factors add a second weak K dependence to that in the exponential through E = M +K.
The normalization factor NJ for Eq.(13) is Eq.(24) with ν = 2:

NJ = (2πmT )3/2N2(m/T ).

The complete integral of the right hand side of Eq.(16) is the total reaction rate ṅ, and the mean reactivity
σv = ṅ/(n′1n

′
2) by definition. Combining these normalization conditions with Eq.(23) and Eq.(27), we arrive at

the normalized probability distribution for dPrel (integrated over dΩ):

dPrel
dK

= NrelN1

(
E

T

)(
E

T

)3/2

p2−σ(K∗1 ) exp

(
−K
T

)
, (28)

Nrel =
(2/π)1/2(m1m2)−3/2

N2(m1/T )N2(m2/T )σv(T )
.

Eq.(2) gives the K dependence of p− = p1. The cross section σ(K∗1 ) is the cross section for particle 1 with energy K∗1
in the rest frame of particle 2, where Eq.(22) gives K∗1 in terms of K.

The integral of Eq.(28) is the relativistically correct formula for reactivity

σv(T ) = Nrel

ˆ
dKN1

(
E

T

)(
E

T

)3/2

p2−σ(K∗1 ) exp

(
−K
T

)
. (29)

Since the CM and relative motion are not perfectly independent, our split into CM and relative probability distributions
Eq.(27) and Eq.(28) is somewhat arbitrary. We choose dPrel/dK to be the integrand of the formula for σv. We present
fits to σv(T ) in Appendix A. For any temperature less than an MeV, the relativistic corrections present in Eq.(29)
are negligible.

C. Neutron spectrum

Eq.(27) is the distribution of CM 4-velocities of reacting pairs with a given K, and among those reacting pairs, K
is distributed according to Eq.(28). We must now find the corresponding distribution of the momenta of the neutrons
produced in those reactions. The K distribution depends on the empirical cross section σ(K∗1 ), which we must treat
with numerical methods. Fortunately, we know that K plays only a minor role in the neutron spectrum, and the w
distribution is amenable to analytic treatment. Hence, we begin by fixing the value of K and deriving the neutron
spectrum for the population of reactions having precisely that relative kinetic energy. We finish by integrating that
analytic result over the distribution of K actually present.
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We want the distribution of neutron momenta in the fluid frame, or the probability a reaction will produce a
neutron in d3p′n. At fixed pn or (K,Ω) in the CM frame, there is some CM 4-velocity w which will boost it to any
given p′n, given by Eq.(10). We need to work out the Jacobian d3w/d3p′n for that transformation. For directions ⊥
perpendicular to w, w and γ are unchanged for small variations dw⊥, so that Eq.(10) says

dw⊥/(γ + 1) = dp′n⊥/(E
′
n + En).

For variations dw‖ parallel to w, we can use Eq.(8) and Eq.(7) to find that

dp′n‖ = E′ndw‖/γ.

Multiplying these, we have

d3w

γ
=
d3p′n
E′n

(
γ + 1

E′n + En

)2

. (30)

Squaring Eq.(10), we find

γ + 1

E′n + En
=

E′n + En
E′nEn +m2

n + p′n · pn
, (31)

which will become important in a moment.
The change of variables from v to p′n in Eq.(23) has transformed the distribution Eq.(27) into

dPcm =
d3p′n
E′n

(
γ + 1

E′n + En

)2
exp (−(γ − 1)E/T )

(2πT/E)3/2N1(E/T )
, (32)

The fluid frame momentum p′n distribution must eventually be isotropic, but for fixed pn, the p′n distribution will
be very strongly peaked in the pn direction, since the CM velocity is tiny compared to the neutron velocity. The p′n
distribution we seek is the average over all directions of pn. Now fixing p′n, the only dependence on the direction
of pn is via the dot product in Eq.(31), which we write in terms of the cosine between the CM and fluid neutron
directions µ, p′n · pn = p′npnµ. From Eq.(31),

dγ

dµ
= −p′npn

(
γ + 1

E′n + En

)2

. (33)

The directional mean of the µ-dependent factors in Eq.(32) is therefore
ˆ
dΩn

4π

(
γ + 1

E′n + En

)2

exp

(
− (γ − 1)E

T

)
=

T

2Ep′npn
exp

(
− (γ(µ)− 1)E

T

)∣∣∣∣µ=+1

µ=−1
(34)

The µ = −1 term in Eq.(34) represents the reactions whose CM velocity v is larger than and opposite to the
neutron velocity, so that the neutron is moving in the opposite direction in the fluid frame than in the CM frame.
At any practical fluid temperature, there are no such reactions: The integral of the µ = −1 term is smaller than the
integral of the µ = +1 term by more than 20 orders of magnitude for any temperature T less than 1.75 MeV for DT,
or 250 keV for DD. That is, for a yield of 1020 neutrons, we make less than a single neutron error by dropping the
µ = −1 term, for any temperature less than these limits. For practical temperatures, the error is of course many
orders of magnitude smaller still. For now we simply drop the µ = −1 limit of integration, and understand γ to be
evaluated at µ = +1, that is, where p′n is parallel to pn.

Eq.(34) is a major simplification. The CM frame direction Ωn is very nearly the fluid frame direction Ω′n, but some
range of directions must contribute. Eq.(34) allows us to consider only the case that pn and p′n are exactly collinear
(specifically, µ = +1). The effective solid angle replacing the eliminated dΩn is roughly 2π(T/M)/v20 , representing
the range of pn directions which actually contribute. Numerically, this works out to a little under 4 ppm of the sphere
per keV for DT and 26 ppm/keV for DD.

Although w directions contribute almost isotropically, with Eq.(34) we need only compute the case of w collinear
with p′n (according to Eq.(10)). The boost transform Eq.(7) is now elementary, and the simple collinear velocity
addition formula Eq.(9) applies to the neutron velocities v′n = p′n/E

′
n and vn = pn/En. Eq.(11) becomes

γ − 1 =
(p′n − pn)2

E′nEn +m2
n + p′npn

. (35)
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The p′n variable is the magnitude of p′n, and therefore p′n > 0. However, if we formally extend the range of p′n to
p′n < 0, we get back the dropped µ = −1 term in the angular integral Eq.(34). That is, we can imagine that a given
direction Ω′n includes neutrons moving in the opposite direction, represented by negative magnitude p′n < 0. Integrals
over dΩ′n now cover the sphere twice, corresponding to the µ = ±1 terms. Since the µ = −1 term is so minuscule, we
will not carefully follow this extended lower integration limit, but it does restore “exact” status to our results, despite
apparently dropping the µ = −1 term after Eq.(34).

We make one final boost from the fluid rest frame to the lab frame, written with double primes, to get the spectrum
for a single fluid element with temperature T and velocity u, with corresponding γu. The time-like component of the
boost is E′n = γu(E′′n − u · p′′n). We rearrange this to show the relationship between the magnitudes of the momenta
and energy in the two frames as

E′n = γu(E′′n − u‖p′′n) (36)

(1− u2)p′2n = (p′′n − u‖E′′n)2 + u2⊥m
2
n, (37)

where u‖ is the component of u parallel to p′′n, and u⊥ is the magnitude of the two perpendicular components. The
Lorentz invariant Eq.(18) is

p′′2n dp
′′
ndΩ

′′
n/E

′′
n = p′2n dp

′
ndΩ

′
n/E

′
n.

We arrive at the neutron spectrum of a single fluid element with temperature T and velocity u, for a given value
of relative kinetic energy K:

dPcm(K)

dωdΩ′′n
=

(E/T )1/2

2(2π)3/2N1(E/T )

E0p
′′2
n

E′′np
′
npn

exp

(
−(γ − 1)

E

T

)
, (38)

where ω is our scaled and shifted lab momentum variable from Eq.(17). This is a normalized probability distribution; it
integrates to one. To get the complete neutron spectrum, we must average this single-K spectrum over the distribution
of K given by Eq.(28),

dP

dωdΩ′′n
=

ˆ
dK

dPrel
dK

dPcm(K)

dωdΩ′′n
. (39)

We could write the neutron spectrum Eq.(38) as a function of neutron energy K ′′n , instead of as a function of
scaled momentum ω. In fact, this practice is nearly universal in the literature. The factor to convert Eq.(38) from a
momentum spectrum to an energy spectrum is

E0dω/dK
′′
n = E′′n/p

′′
n = 1/v′′n.

However, for the purpose of learning about a fusion plasma, this is a mistake. Again, the neutron spectrum is (mostly)
a boosted replica of one component of the CM velocity distribution of the reactant pairs, so we really want to look at
a velocity spectrum. As we discussed near the end of section IIA, the best way to do this is to scale the momentum
spectrum by E0 when we want velocity units. The momentum spectrum is far more nearly Maxwellian than the
energy spectrum, since it is essentially a boosted version of one component of the thermal momentum distribution.

We have written Eq.(38) to show clearly how relativistic effects are small corrections to the non-relativistic treat-
ment, and to avoid high order cancellations which make many otherwise correct relativistic results difficult to accu-
rately compute. To recap, E = M + K where M = m1 + m2, while E0 = mn + K0 where K0 is the neutron kinetic
energy at K = 0 from Eq.(3). Eq.(37) gives p′n, N1(z) is from Eq.(26), and Eq.(3) gives Kn, hence pn as a function
of K, and Eq.(35) gives γ − 1. dPrel/dK comes from Eq.(28).

With the conversion to a neutron energy spectrum and for a fluid element at rest (u = 0), Eq.(39) agrees exactly
with Eq.(36) of Appelbe[9], albeit written and derived very differently. (Appelbe makes a trivial mistake in his
Eq.(33), resulting in an error by a factor of 4π in his Eq.(36).) When u is non-zero, Appelbe’s Appendix B discussion
omits the overall factor of p′′n/p′n (for an energy spectrum) produced by the boost to non-zero fluid velocity u, which
our Eq.(39) includes. The various other single fluid element results in the literature, such as Brysk[1] or Ballabio[7],
agree with Eq.(39) up to some accuracy, typically missing terms of order v3/v3n and v2.

D. Moments of the single element spectrum

We turn now to the ω moments of Eq.(38). We will use spectral moments heavily in our analysis of multiple fluid
elements. We define the mth moment of the neutron spectrum Eq.(38) for a single K as

Mm(T,u;K) = 4π

ˆ
dp′′n
E0

dPcm(K)

dωdΩ′′n
ωm. (40)
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For these moment calculations, we will switch back to dp′′n = E0dω. We choose the normalization constant so that the
integral ofM0 over d3p′′n is 4π, that is, we normalizeM0 per sphere instead of per steradian. Thus, the integral of
M0 over p′′n is a function of viewing direction Ω′′n for non-zero u. Note thatMm has units of mth power of velocity.

Because the zeroth moment must integrate to 4π over all viewing directions for arbitrary u, the m = 0 integrand
must be a perfect differential in direction. Defining direction cosine µ = u‖/u (the part of u parallel to p′′n, not related
to the previous µ), we find from Eq.(36) that at fixed E′n and u,

d(µp′′n)

dµ
=

v′′np
′′
n

v′′n − u‖
.

On the other hand, for fixed µ, the differential of Eq.(36), combined with the differential of Eq.(7) (when pn and v
are parallel) is, with w = γv from Eq.(17),

dp′′n
pn

=
dw

γu

(
1 +

v

vn

)
1

v′′n − u‖
.

The m = 0 integrand excluding the exponential factor, written as a µ derivative for fixed v′n and u, is therefore

dp′′n
E′′n

p′′2n
p′npn

=
dw

γu

(
1 +

v

vn

)
d

dµ

(
µ
p′′n
p′n

)
. (41)

At µ = ±1, u‖ = ±u, and p′′n/p′n = γu(1± u/v′n). Thus, the integral over all u directions of the d/dµ factor is simply
4πγu, so Eq.(41) verifying our assertion that the integral ofM0 over all directions is one, for any u.

As Eq.(41) hints, we can simplify all the moment integrals by changing the integration variable from p′′n to w. First
we solve Eq.(37) for p′′n−u‖E′′n and divide by Eq.(36) to produce a “pseudo-velocity” ψ′n depending only on v′n and u:

ψ′n ≡ γu
(

(1− u2‖)v
′2
n − u2⊥

)1/2
=

v′′n − u‖
1− u‖v′′n

. (42)

We recognize this as simple velocity addition, so v′′n = (ψ′n+u‖)/(1+u‖ψ
′
n). Simple velocity addition Eq.(9) also relates

v′n, hence ψ′n, to vn and v � vn. From Eq.(36), we get E′n/E′′n in terms of v′′n, leading to E′n/E′′n = γu(1+u2‖)/(1+u‖ψ
′
n).

Hence,

p′′n/p
′
n = γ‖ + (γ2‖/γu)(u‖/v

′
n)−Ψ, (43)

where we write γ‖ = (1− u2‖)
−1/2 and

Ψ = γ‖ −
ψ′n

γu(1− u2‖)v′n
= γ‖

[
1− (1− γ2‖u

2
⊥/v

′2
n )1/2

]
. (44)

We note that γ‖u⊥/v′n and (γ2‖/γu)(u‖/v
′
n) are at most a few percent.

Next we boost momentum from the CM frame to the fluid frame

p′n/E0 = γ(1 + v/vn)pn/E0.

We combine this with Eq.(43) and the velocity addition formula Eq.(9) to arrive at

ω =
pn
E0

{
γUC − 1 +

w

vn
UV

}
+ ωcm, (45)

where we define

UV = γ‖ + (γ2‖/γu)vnu‖ −Ψ (46)

UC = γ‖ + (γ2‖/γu)(u‖/vn)−Ψ (47)

ωcm = (pn − p0)/E0 (48)
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Using Eq.(43), we can also express Eq.(41) in terms of UC,V :

dp′′n
E′′n

p′′2n
p′npn

=
dw

γu

(
U∗C +

v

vn
U∗V

)
,where U∗C,V =

∂(u‖UC,V )

∂u‖
(49)

U∗V = γ2‖
{
γ‖ + 2(γ2‖/γu)vnu‖ −Ψ∗

}
U∗C = γ2‖

{
γ‖ + 2(γ2‖/γu)(u‖/vn)−Ψ∗

}
Ψ∗ = Ψ− (γ2‖/γ

2
u)(1− γ2‖u

2
⊥/v

′2
n )−1/2 u2‖/v

′2
n

From Eq.(49) and Eq.(40), the integrand for the m-th moment is

dw
{
U∗Cω

m/γu + (v/vn)U∗V ω
m/γu

}
exp(−(γ − 1)E/T ). (50)

The factor in curly braces in the moment integrand Eq.(50) mostly depends on w through the explicit w/vn term
in Eq.(45) and the explicit v/vn term in Eq.(49). A much weaker w dependence comes from the γ = (1 + w2)1/2 in
Eq.(45) and the v′n dependence of Ψ and Ψ∗. We therefore expand γ, Ψ, and Ψ∗ as power series in w. With powers
of w, we recognize the moment integrals from Eq.(24). In fact, changing variables to w and integrating that result by
parts yields two useful families of integrals (with z = E/T ):

Jν(z) =

ˆ ∞
−∞

dw v w2ν−1 exp(−(γ − 1)z) = (2ν − 1)!! (2π/z)1/2z−νNν(z), (51)

Iν(z) =

ˆ ∞
−∞

dww2ν exp(−(γ − 1)z) = (2ν − 1)!! (2π/z)1/2z−νNν+1(z). (52)

The Iν match the U∗C term in Eq.(50), while the Jν match the U∗V term. The former picks out only even powers of
w, while the latter picks out only odd powers of w. Specifically, integrating over dw replaces w2ν in the power series
for U∗Cω

m by Iν , and replaces vw2ν−1 in the power series for U∗V ω
m by Jν . Since I0(E/T ) is precisely the reciprocal

of the normalization factor in Eq.(40), eachMm becomes a sum of terms proportional to either Iν/I0 or Jν/I0, each
of which is itself a power series in 1/z = T/E.

If we additionally expand γ‖ and γu as power series in u‖ and u, respectively, we will have each Mm as a power
series in T , u‖, and u. The coefficients in these series will be functions of vn, E, and ωcm, with an overall mth power
of pn/E0 = 1 + ωcm.

To begin this program, we note that expanding γ = (1 + w2)1/2 in powers of w is straightforward. To expand the
weak w dependence of Ψ, which arises via v′n, we must first expand Ψ in powers of γ‖u⊥/v′n:

Ψ = 1
2γ

3
‖u

2
⊥/v

′2
n

(
1 + 1

4γ
2
‖u

2
⊥/v

′2
n + 1

8γ
4
‖u

4
⊥/v

′4
n + ...

)
, (53)

For each term of this series, we convert v′n to vn by means of the velocity addition formula Eq.(9), expanded as a
series in w:

vn
v′n

= 1− (1− v2n)w/vn
(1 + w2)1/2 + w/vn

= 1− (1− v2n)(w/vn)(1− w/vn + ...) (54)

We use a computer algebra system to keep track of all the polynomial terms, up to whatever order in u and w we
please. After the substitution for the integration, we keep whatever powers of 1/z = T/E we please. Formally, T/E
and ωcm are of order v2/v20 . We take u to be of order v, while vn is of order 1. Although the series converge relatively
quickly, with three independent variables characterizing the fluid element — T , u‖, and u — plus our unspecified
reaction collision energy K, which implicitly determines the vn and E parameters, the equations for Mm quickly
become very lengthy. For example,

M1

pn/E0
=

{
ωcm
pn/E0

− u2

2v2n
+

(
1 +

v2n
2

)
T

v2nE

}
+

{
1 +

2ωcm
pn/E0

− 3 + 2v2n
2

u2

v2n
− 9T

2E

}
u‖

vn

+
5 + v2n

2

u2‖

v2n
+

5 + 7v2n
2

u3‖

v3n
+

5 + 66v2n + 9v4n
8

u4‖

v4n
−O(v4/v40) (55)
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E. Allowing for the relative kinetic energy distribution

The spectrum Eq.(38) depends only weakly on K, so our strategy is to expand in K. We begin by examining the
K distribution dPrel/dK from Eq.(28) and Eq.(29). We can pre-compute not only σv(T ), for any cross section, but
also the nth moment of the dPrel/dK distribution:

Kn(T ) =

ˆ
dK Kn dPrel/dK. (56)

For n = 1, we define a dimensionless K1(T ) = K/T , which is roughly 5, since most of thermonuclear reactions occur
in the tail of the relative velocity distribution of the reactants. For n > 1, we define the dimensionless nth central
moment Kn: (

K −K
)n

(T ) =

ˆ
dK

(
K −K

)n
dPrel/dK = TnKn(T ). (57)

We provide fits to K1(T ) and K2(T ) in Appendix A.
For n ≥ 2, the Kn(T ) are non-linear functions of the distribution dPrel/dK. For our spectral moment analysis, we

will need linear functions of dPrel/dK, so we define the non-dimensional raw moments K′n as well:

Kn(T ) =

ˆ
dK Kn dPrel/dK = TnK′n(T ). (58)

K′n(T ) =

n∑
m=0

(−1)m
(
n

m

)
K
mKm(T ). (59)

Let f(K) be an arbitrary function of K, such as the spectrum Eq.(38) at a particular p′′n, T , and u, or one of the
momentsMm. We can expand f as a Taylor series around K:

f(K) = f
(
K
)

+ f ′
(
K
) (
K −K

)
+ 1

2f
′′ (K) (K −K)2 + ..., (60)

which makes it easy to compute the mean of f over the distribution i0(K) in terms of our precomputed K-distribution
moments:

f(K) = f(K) + 1
2f
′′(K)T 2K2 + 1

6f
′′′(K)T 3K3 + ... (61)

When f is the spectrum Eq.(38), the strongest K dependence comes from the γ − 1 ∼ w2 in the exponential. The
first K derivative is

T
∂

∂K

dP (K)

dωdΩ′′n

/
dP (K)

dωdΩ′′n
= R

(
w

vn
− T

Ev2n

)
+

T

2E
− (γ − 1)− N ′1

N1
, (62)

where we define R = E/En − 1. The w/vn term in Eq.(62) is largest, of order v/v0; the N ′1 term is of order v4/v40 ,
and all the rest are of order v2/v20 . Each successive K derivative multiplies the previous derivative by Eq.(62) in
addition to differentiating it with respect to K, hence the n-th derivative will be of order vn/vn0 . We have multiplied
the derivative in Eq.(62) by a factor of T to track the power of K in the expansion Eq.(61), so that each term in that
expansion is smaller than the previous term by a factor of order v/v0, that is, the ratio of thermal to neutron velocity.
The leading order term for the n-th derivative is

Tn
∂n

∂Kn

dP (K)

dωdΩ′′n

/
dP (K)

dωdΩ′′n
= Rn

(
T

Ev2n

)n/2
Hen

((
w2E

T

)1/2
)

+ ..., (63)

where Hen are the Hermite polynomials.
With the first correction term, the single fluid element spectrum Eq.(39) becomes

dP

dωdΩ′′n
=

(
1 +K2

w2E − T
2Ev2n

R2

)
dPcm(K)

dωdΩ′′n
. (64)
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The parameters depending upon K, namely vn and E, are to be evaluated at K = K(T ) throughout. This formula is
accurate enough for many practical purposes, and is much cheaper to compute than the integral in Eq.(39). The K2

correction term broadens the peak slightly to account for the distribution of relative kinetic energies of the reactants.
The overall shape is still quite accurately Gaussian for a single fluid element.

The moments of the single fluid element spectrum Eq.(39), or its approximate form Eq.(64) are

Mm(T,u) =

ˆ
dKMm(T,u;K)dPrel/dK. (65)

We can apply the same formalism to the moments as to the whole spectrum. However, expanding around K = 0 for
the moments will be more convenient than around K = K(T ), since we want to use the moments in our analysis of
spectra resulting from plasmas with a distribution of temperatures. The K dependence in the moments comes from
ωcm = pn/E0− 1, vn, E, and an overall factor that is a power of pn = Envn. We have reduced each moment to a sum
of terms which are powers of these quantities, so differentiating with respect to K is straightforward. The derivatives
dvn/dK from Eq.(5) and dEn/dK from Eq.(4) introduce no new variables, and produce only sums of powers of vn,
En, and E, so we can take multiple K derivatives of the moments with no additional machinery.

The end result is a power series in K for each moment, which is a power series in T , u‖, and u, with coefficients
that are functions of v0, E0, and M (the K = 0 values of vn, En, and E). Integrating over the K distribution simply
amounts to replacing each Kn by its mean Kn. The moments simplify if we scale K to units of velocity, and T to
units of velocity squared:

τ = T/M (66)

κ =

(
1− E0

M

)
K

p0
= K

dωcm
dK

∣∣∣∣
0

(67)

Note that κ is the shift in the centroid of the spectrum (from v0) caused by the mean relative kinetic energy of the
reactants at temperature T , to the extent that shift is proportional to K. We will present formulas for the moments
in the next section. Averaging those formulas over K produces averages of powers of κ over K, which we write κ, κ2,
etc., proportional to the corresponding functions of temperature K1, K′2, etc. defined in Eq.(58).

III. NEUTRON SPECTRUM FOR MULTIPLE FLUID ELEMENTS

In laser fusion implosions, burn occurs over a very wide range of different temperatures: Adiabatic temperature
increase during compression turns burn on, then decreasing temperature shuts burn off. A typical NIF shot simulation
produces significant neutrons over a range of a factor of 2 to 2.5 in temperature (from the 10% to the 90% point of the
burn weighted temperature distribution). The standard deviation of the burn temperature distribution ranges from
about 1/4 to 1/3 of its mean, with perfectly symmetric implosions on the lower end and highly distorted implosions
on the upper end of that range. In 2D and 3D simulations with realistic asymmetry, significant burn likewise occurs
over a very wide range of fluid velocities – say from 250 km/s away from the detector to 250 km/s toward the detector.
(One dimensional implosion models exhibit a smaller range of fluid velocities during burn, but about the same range
of burn temperatures.)

Usually our neutron spectrometer is far from the target, so that only the overall distribution of fluid temperatures
and velocities from every point in the target and every time during the burn matters. Let this overall distribution
function be N (T,u), so that the number of neutrons produced at any point of the four dimensional (T,u) space, the
“burn distribution” is

dN = N (T,u) dTd3u. (68)

For any function f(T,u), we can define the burn average 〈f〉 as

〈f〉 =

ˆ
fdN

/ˆ
dN . (69)

We can take f to be the entire spectrum from Eq.(64) or Eq.(39). Since the spectrum for a single fluid element
Eq.(64) is very nearly a Gaussian with mean u‖ and variance T/E, the burn average spectrum is a sum of Gaussians.
Even when all the u‖ = 0, the sum is no longer Gaussian – it will have a sharper peak corresponding to the colder
fluid elements and a broader tail due to the hotter fluid elements. In other words, a realistic neutron spectrum has
kurtosis which increases with the variance of the burn temperature distribution. Any variance in the distribution of
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u‖, the velocity component along the viewing direction, will act to broaden the peak as well as to further distort it
from a perfect Gaussian shape.

In addition to the mean 〈...〉 of a single function f over the burn distribution, we also define the generalized
covariance of several functions f , g, h, and so on, as:

Cov(f, g, h, ...) = 〈(f − 〈f〉)(g − 〈g〉)(h− 〈h〉)...〉 (70)

We will also abbreviate Var(f) = Cov(f, f).
In order to quantify all of this, we take burn averages of the moments Mm(T,u). We have defined the Mm to

be linear functions of the spectrum dP/dωdΩ′′n, so that the moments of the burn averaged spectrum are the burn
averaged moments 〈Mm〉. We begin withM0, which is the yield in direction Ω′′n, relative to what it would be if the
neutrons were emitted isotropically in the lab frame:

〈M0〉 =1 +
2

v0
〈u‖〉+

1 + v20
2v20

(
3〈u2‖〉 − 〈u

2〉
)
−

2
(
1− v20

)
v20

〈κu‖〉

+
2

v30

(
2〈u3‖〉 − v

2
0〈u2u‖〉

)
+O(v4/v40). (71)

Kinematic effects make the yield slightly anisotropic, dominated by an L=1 variation with viewing direction, of
amplitude 2|〈u〉|/v0. The small 〈κu‖〉 corrects for the fact that v0 rather than vn appears in the denominator of the
〈u‖〉 term.

For the higher moments, after the burn averaging, we divide by the burn averaged yield to get the unit-normalized
spectral moment:

〈ωm〉 = 〈Mm〉 / 〈M0〉. (72)

To do this, we expand the reciprocal of 〈M0〉 as a power series, and multiply by our power series for 〈Mm〉. The first
normalized moment is

〈ω〉 =〈u‖〉+ 〈κ〉+
2 + v20
v0
〈τ〉+

5Var(u‖)− (1− v20)〈u2‖〉 − 〈u
2〉

2v0

+
2

v0
Cov(κ, u‖) + v0〈κu‖〉 −

2 + v20
v20
〈τ〉〈u‖〉+

9

2
〈τu‖〉

+
(5 + 7v20)

2v20
Cov(u‖, u‖, u‖) +

1 + 8v20
v20

Var(u‖)〈u‖〉+ 〈u‖〉3

− 3 + 2v20
2v20

Cov(u2, u‖)−
1

2
〈u2〉〈u‖〉 −

〈κ2〉
2v0

+O(v4/v40). (73)

The 〈κ2〉 term is the largest of order v4/v40 , we omit other terms formally of the same order. The first two terms are
the only ones likely to be large enough to detect in NIF experiments; at T = 5 keV the third term is about 5 km/s
(15 km/s) for DT (DD). All terms which include a variance or covariance are zero for a single fluid element, since by
definition there is only a single temperature (or K) in that case.

The variance Var(ω) = 〈ω2〉 − 〈ω〉2 is the square of the width of the distribution. We expand and combine the
power series for the first and second moments to find

Var(ω) =〈τ〉+ Var(u‖) + 2Cov(κ, u‖) +
4 + 3v20
v0

Cov(τ, u‖) + 2v0〈τ〉〈u‖〉

+
3 + v20
v0

Cov(u‖, u‖, u‖) +
2 + 2v20
v0

Var(u‖)〈u‖〉 −
1

v0
Cov(u2, u‖)

+ 〈κ2〉 − 〈κ〉2 +
2

v0
Cov(κ, τ) +O(v4/v40). (74)

We show only the two largest fourth order terms. The first term, the mean temperature, is the original Brysk
interpretation of the peak width. The second term, the variance of fluid velocity, introduces a dependence of peak width
on viewing direction – in terms of spherical harmonics it is an L=2 variation. This variation of apparent temperature
with direction can amount to as much as 20% in simulations. Note that it is the burn averaged temperature and velocity
variance which determine the variance of the neutron peak, when the peak is not Gaussian due to inhomogeneous
burn conditions. Higher moments do contribute at higher orders, but reduced by a factor of v/v0 per order.
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For the third moment and beyond, we are interested in the deviations from a Gaussian spectral shape. Hence, we
convert the moments to cumulants. When we expand and combine the power series, we find the skew and kurtosis
(the cumulants corresponding to the third and fourth moments) to be

Skew(ω)Var(ω)3/2 = 3Cov(τ, u‖) + Cov(u‖, u‖, u‖) + 3Cov(κ, τ)

+
6 + 9v20

2v0
Var(τ) + 3v0〈τ〉2 + 3Cov(κ, u‖, u‖) +O(v4/v40). (75)

Kurt(ω)Var(ω)2 = 3Var(τ) + 6Cov(τ, u‖, u‖) + Cov(u‖, u‖, u‖, u‖)− 3Var(u‖)2

+ 12Cov(κ, τ, u‖) +O(v5/v50) + 3〈τ〉3 + ... (76)

In Eq.(75), we show only the four largest fourth order terms. In Eq.(76), we show only the largest fifth order term,
and we also show the largest term which is non-zero for a single fluid element, 3〈τ〉3, which is sixth order.

The largest terms in the skew and kurtosis for a single fluid element are, respectively, +3v0τ
1/2 and +3τ . These

represent the intrinsic deviation of a thermal neutron spectrum from a Gaussian shape, that is, what would be present
even if the burning plasma were absolutely uniform. For DT (DD) at T = 5 keV, the intrinsic skew is 5.3 × 10−4

(2.5× 10−4), scaling as T 1/2 – exceedingly small for any fusion plasma. The intrinsic kurtosis at 5 keV is 3.1× 10−3

for DT (3.5× 10−3 for DD), scaling as T . Both these terms arise from relativistic corrections to the neutron and CM
frame velocity addition. The largest non-relativistic skew and kurtosis terms are 2τ3/2/v30 (from order v6 terms) and
−6τ2/v40 (from order v8 terms), respectively.

The neutron spectrum will exhibit substantial kurtosis when there is a distribution of burn temperatures. The
first term in Eq.(76) produces a kurtosis of roughly 3Var(T )/〈T 〉2. We have mentioned that simulations predict
Var(T )/〈T 〉2 between about 1/16 and 1/9. Thus, typical implosions should produce neutron spectra with 0.2 to 0.3
kurtosis, on the lower side for perfectly symmetric implosions, and on the higher side for highly distorted implosions.
An implosion with a realistic distribution of burn temperatures does not produce a Gaussian neutron spectrum.

The spectral skew for an asymmetric implosion will likely be dominated by the 3Cov(τ, u‖) term, which has an
L=1 directional variation. However, even a perfectly symmetric implosion will exhibit a skewed neutron spectrum
owing to the 3Cov(κ, τ) and 3Var(τ)/v0 terms. Estimating K ≈ 5T , we find Cov(κ, τ) ≈ 20Var(τ)/v0. This ranges
between 1.25 and 2.2 times 〈τ〉2/v0, so we expect the skew in the neutron momentum spectrum to be 4 to 7 times
〈τ〉1/2/v0 owing to the distribution of burn temperatures, much larger than the intrinsic skew. Therefore, at 5 keV, the
skew for a perfectly symmetric implosion should be at least 0.02 for DT and 0.06 for DD, which may be measurable.
Temperature-velocity correlations in simulations of highly asymmetric implosions produce much larger skew, in the
range of 0.1–0.2 for DT.

We chose our non-standard spectral variable ω, the neutron momentum scaled to velocity units, at least partly
because that choice minimizes distortions to the underlying CM Maxwellian. We can now back up that claim by
comparing the intrinsic momentum spectrum skew to the intrinsic skew of the velocity or energy spectrum. The
velocity spectrum skew is −6v0τ

1/2, that is, the opposite sign and twice the magnitude of the momentum spectrum
skew. The energy spectrum skew is +3τ1/2/v0, larger than the momentum spectrum skew by a factor of 1/v20 , which
is 34 for DT (193 for DD). Thus, energy is a poor choice for the spectral variable because it substantially distorts the
underlying CM Maxwellian distribution we want to study: At 5 keV the intrinsic skew of the energy spectrum is 0.02
for DT (0.05 for DD), compared to 0.0005 (0.00025) for our scaled momentum spectrum.

IV. HOW SCATTERING CHANGES PEAK SHAPE

Out-scatter and small angle down-scatter can both change the shape of the peak significantly. Out-scatter operates
in two different ways: First, the energy dependence of the total neutron scattering cross section causes differential
removal within the peak. Second, correlations between position and fluid state (temperature and velocity) change the
distribution N (T,u). That is, N should be the distribution of neutrons detected in a particular line of sight, not the
distribution of neutrons born moving in tht direction.

Table II shows the total neutron out-scatter cross sections for three fuel compositions and three ablator materials.
Typical fuel areal density in NIF cryogenic layered implosions is about 1 g/cm2, while ablator areal density at burn
time is less than 0.3 g/cm2. Hence, roughly 20% of the DT neutrons and 45% of the DD neutrons scatter in high
performance NIF implosions. Scattering modifies the DD peak considerably more than the DT peak.
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σtot at DT σtot at DD
(cm2/g) (cm2/g)

DT 0.215 0.556
DD 0.242 0.707
T3H 0.219 0.564
Be 0.102 0.157
CH 0.092 0.193
C 0.066 0.080

Table II: Total neutron cross sections at the DT peak energy (14.028 MeV) and at the DD peak energy (2.449 MeV), for three
fuel compositions and for three ablator materials. The cross sections are from ENDF/B-VII.1, or JENDL-4.0 for C.

A. Energy dependent out-scatter

We estimate the impact of energy dependent out-scatter on the peak shape by looking at how it would affect a
purely Gaussian neutron momentum spectrum of mean ω and variance σω,

dP/dω ∝ exp
(
− 1

2 (ω − ω)2/σ2
ω

)
exp (−ρrσtot(ω)) . (77)

Here σtot(ω) is the total neutron cross section showing its presumed energy dependence, and ρr is an average areal
density for the scattering process. The actual process is far more complex, of course, but here we are merely trying
to estimate the magnitude of the effect. Expanding the total cross section as a Taylor series in ω and discarding
everything beyond ω2, we see that differential scattering across the peak simply shifts its mean and variance by

ω →
(
ω −

√
Var(ω)∆′στtot

)
/(1 + ∆′′στtot) (78)

Var(ω)→ Var(ω)/(1 + ∆′′στtot), where (79)

∆′σ =
√

Var(ω)(dσtot/dω)/σtot, (80)

∆′′σ = Var(ω)(d2σtot/dω
2)/σtot, (81)

and τtot = ρrσtot(0) is the scattering depth at the center energy of the peak. The ∆′σ and ∆′′σ are fractional changes
in cross section over one standard deviation of the peak. The cross section curvature term ∆′′στtot is the fractional
change in variance. Assuming that is relatively small, the cross section slope term ∆′στtot is the centroid shift as a
fraction of its standard deviation

√
Var(ω).

For 14 MeV DT neutrons and various fuel compositions, the first derivative M−1/2σ−1totdσtot/dω ranges from -0.004
to -0.005 keV−1/2 (T3H has the highest slope, then DT, then DD). Hence the peak shift is about 1% of the peak
width at T=4 keV (to higher energy) per unit optical depth. The second derivative M−1/2σ−1totdσtot/dω is always
small, below about 10−4 keV−1, so the variance changes by less than 0.1% per unit optical depth for any temperature
less than 10 keV. For 2.45 MeV DD neutrons, the first derivative ranges from +0.002 to -0.006 keV−1/2 (the tritium
cross section increases with energy at 2.45 MeV), while the second derivative is once again below about 10−4 keV−1.
Again, this means DD peak shifts near 1% of peak width per unit optical depth at 4 keV temperature, with changes
in variance below 0.1% per unit optical depth up to 10 keV. For DT, optical depth is typically near 0.2 for NIF high
performance implosions, so both the peak shift and width change will be at most parts per thousand. For DD, the
optical depth is typically around 0.5, which still leaves peak shifts below 1% of the peak width for NIF implosions.

Ablator materials like carbon or beryllium, on the other hand, have more structure in their cross sections σtot,
so second order expansion in ω is a poor approximation. Nevertheless, we can compute the actual shifts and width
changes for a variety of Gaussian centroids and variances to bound the magnitude of the effect. For 14 MeV DT
neutrons and NIF-like temperatures in the range from 2-6 keV, peak shift ranges from -0.3% to +0.3% of the peak
width per keV1/2 per unit optical depth for carbon or CH, and is about -0.2% for beryllium. Since ablator ρr should
be considerably less than fuel ρr, in the range of 0.1-0.2 g/cm2, the DT peak shift again ought to be no more than
1% of the peak width in NIF implosions. For 2.45 MeV DD neutrons, the shift as a fraction of peak width per keV1/2

per unit optical depth ranges from -0.5% to +0.4% for carbon or CH, but is much larger, about +5%, for beryllium.
Thus, with a beryllium ablator at 0.2 g/cm2 and a 4 keV burn temperature, out-scattering from the ablator would
shift the DD peak to lower energy by less than 0.2% of the peak width, which is the biggest peak shift due to ablator
scattering. The second derivative change in variance is also small, up to a maximum of 1% per keV per unit optical
depth for beryllium and DD neutrons, but three to ten times smaller for DT neutrons or carbon or CH ablators.

Thus, the energy dependence of the total neutron scattering cross section will cause peak shifts of under 1% of peak
width, and even smaller changes in variance for NIF layered implosions.
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DT neutrons DD neutrons
σ∗
el ωel σ∗

el ωel

(cm2/g) (km/s) (cm2/g) (km/s)
DT 0.171 5320 0.304 3070
DD 0.175 7200 0.514 4400
T3H 0.175 4980 0.260 2800
Be 0.068 900 0.101 1090
CH 0.031 530 0.075 1600
C 0.032 510 0.047 1210

Table III: Differential neutron cross section parameters for near forward scatter at the DT peak energy (14.028 MeV) and at
the DD peak energy (2.449 MeV), for three fuel compositions and for three ablator materials.

B. Near forward scattering

Small angle elastic scattering returns some neutrons into the peak at a lower energy than before the scatter event.
Usually, we estimate this small angle down-scatter by observing larger angle down-scatter outside the peak, so we
can correct the peak shape. The peak shape change due to small angle down-scatter is the error in this correction
procedure, for practical purposes.

Down-scatter into the peak is a more serious problem than energy dependence of out-scatter. To make some
rough estimates of the problem, we note that for small angle scatter, the differential cross section is approximately
exponential (or linear) as a function of energy loss. On our ω neutron momentum scale, we write the differential
elastic cross section as

dσel/dω ≈ σ∗el/ωel exp(ω/ωel), (82)

for ω < 0, and dσel/dω = 0 for ω > 0. Here, ωel is the scale length in scaled neutron momentum corresponding to the
forward elastic scatter peak. Table III shows our estimates of these forward scattering parameters from ENDL-2009
differential cross section tables.

Without any attempt to correct for near forward down-scatter, the errors in the raw spectral moments will be

∆〈ωn〉 = n!ωnelτ
∗
el/(1− τtot), (83)

where τ∗el = σ∗elρr is the optical depth for near-forward elastic scatter. For scattering off fuel in a layered NIF capsule
with ρr ∼ 1 g/cm2, this is of order 1000 km/s for the centroid shift, with correspondingly large errors in higher
moments. Some kind of correction for near forward scatter from the fuel is therefore an absolute necessity. Since
the problem is that ωel is very large for scattering from the fuel, even the very simple correction of restricting the
moment integral to within a few widths of the peak will reduce the centroid and variance errors by a large factor.
For scattering off a CH or carbon ablator with a fairly large 0.3 g/cm2 areal density, the near forward scatter error in
centroid would be only of order 5 km/s, but the error in variance for completely ignoring near forward scatter from
the ablator would be a substantial 2× 5002 × 0.01 km2/s2 or about 0.25 keV.

In this paper we merely point out that near-forward elastic scatter, both from fuel and ablator, will cause substantial
distortion of the DT peak shape, as well as of the DD peak shape. The accuracy of any measurement of the peak
centroid, variance, or higher moments will depend on precisely what technique we use to correct for near-forward
scatter. A discussion of particular correction techniques is beyond our scope here.

C. Scattering changes to fluid temperature and velocity distribution

Perhaps the subtlest effect of scattering is to alter the distribution N (T,u) of fluid temperature and velocity
introduced in section III. Only the neutrons actually detected contribute to this distribution, and the fraction of
neutrons born in any given fluid element which reach the detector will vary with line of sight, as well as with position
and time. For a given line of sight and at a given instant of time, each fluid element lies at some optical depth
τtot =

´
drρσtot through the capsule to the detector. We define attenuation α = 1 − exp(−τtot), the fraction of

neutrons born in a given fluid element that are removed by scattering or absorption from a given line of sight. Writing
N0(T,u) for the distribution of neutrons born, we have for the distribution of detected neutrons

N (T,u) = (1− α)N0(T,u). (84)
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We write 〈...〉 for mean values weighted by N (neutrons detected), and 〈...〉0 for mean values weighted by N0

(neutrons born), and similar 0 subscripts for Var(...) and Cov(...). For any quantity X,

〈X〉 = 〈X〉0 − Cov0(α,X)/ (1− 〈α〉0) , (85)

Var(X) = Var0(X)−
(
Cov0(α,X)

1− 〈α〉0

)2

− Cov0(α,X,X)

1− 〈α〉0
, (86)

with more complicated expressions for higher cumulants. Such formulas tell us how to convert distributions from
"as born" to "as detected". While the birth distributions are completely independent of the positions of the fluid
elements, the detected distributions require knowledge about the relative location of emitter, scatterer or absorber,
and detector. Specifically, each moment of X depends on covariances of X with α. The removal fraction α serves as
a position coordinate, running from zero at the detector to some positive value, different for each ray, on the far side
of the target. Out-scattering changes the mean values and variances of temperature and fluid velocity to the extent
the fluid conditions are correlated with position.

When α is small, as in low ρr implosions, the corrections in Eq.(85) and Eq.(86) are small. However, in NIF layered
implosions, the difference between detected and birth distributions can be substantial, especially for the DD peak,
where α is roughly one half. The strongest effect is on the mean and variance of the component of velocity toward the
detector. During the implosion, fuel on the far side of the capsule is moving toward the detector, while fluid on the
near side is moving away from the detector. Since α is effectively a position coordinate, it can be highly correlated
with the line of sight velocity u, with Cov0(α, u‖) > 0 for an implosion. At late times when the capsule is exploding,
on the other hand, Cov0(α, u‖) < 0.

In non-igniting NIF implosions, burn mostly occurs during the implosion phase, so that the centroid of the neutron
peak will be shifted to lower energy by this mechanism, according to Eq.(85). The square of this shift, which is the
second term of Eq.(86), can cause a substantial reduction in the velocity variance as well. These reductions in both
the energy of the peak and its width will appear even in completely symmetric implosions.

V. SUMMARY

We have extended the work of Brysk, Appelbe, and others, to describe the shape of the peak of a neutron spectrum
for two-product thermonuclear fusion reactions like DT and DD. Unlike previous work, we include the effects of a
distribution of fluid elements with many different temperatures and velocities. We have also recast previous single
fluid element results in terms of the neutron momentum spectrum. The momentum spectrum offers a less distorted
picture of the underlying CM velocity distribution than the velocity spectrum, and a much less distorted picture than
the neutron energy spectrum used in all previous studies[1, 7–10].

We derive the momentum spectrum cumulants up to kurtosis, which show how successive moments of fluid temper-
ature and velocity, weighted by number of neutrons produced in that fluid state, contribute to shape of the peak in
the momentum spectrum. The dominant term in the kurtosis, for example, turns out to be three times the variance
of the temperature, divided by the square of the mean temperature. For the range of temperatures of the burn in
laser fusion capsules, the kurtosis of the momentum spectrum should be of order 0.25, which may be measurable with
NIF neutron spectrometers. Since most laser fusion capsules, even exploding pushers at much smaller scales than NIF
capsules, burn over a similarly broad temperature range, kurtosis should be a universal feature of neutron spectral
peaks.

The only assumption we make here is that the reactant momentum distribution is Maxwell-Jüttner, that is,
Maxwellian corrected for relativistic effects. However, neutron scattering in the capsule can substantially alter the
spectrum, which may significantly complicate the relation between the moments of the spectrum and the moments of
the underlying fluid temperature and velocity. In NIF cryogenic layered implosions, scattering removes roughly half
of the DD neutrons, making any interpretation of DD spectra particularly challenging. Scattering will also complicate
the variation of peak shape with viewing direction predicted by our moment formulas.

When kinetic effects are important, the reactant momentum distribution is not Maxwellian, and our formulas may
break down. Albright[12] has discussed this case. We believe that layered NIF implosions are so collisional that even
at 5σ in the tail of the relative velocity distribution where the fusion reactions take place, the reactant distribution
is Maxwellian. We note that as long as the central part (not the tails) of the CM velocity distribution remains
Maxwellian, our analysis applies. The tails of the relative velocity distribution affect reaction rates, hence N (T,u),
but do not directly affect the neutron spectrum.

Reactant species separation has also been invoked to explain anomalies in fusion neutron spectra[13]. Again, we
do not believe this is a significant effect for NIF layered implosions. Species separation by itself changes only the
distribution of fluid temperatures and velocities N (T,u) at which neutrons are produced. If species separation does
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take place, our formulas for spectral shape remain unchanged, as long as we use the N (T,u) describing where neutrons
were actually born.
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Appendix A: Relative Kinetic Energy Distribution Moments

Bosch and Hale[14] describe the standard techniques for calculating and measuring the DT and DDn reaction cross
sections σ(K∗1 ). We have performed similar fits to the 2011 ENDF/B-VII.1 cross sections. The Bosch and Hale fit
to the DT reactivity is within a few tenths of a percent of our Eq.(29) with σ(K∗1 ) from the ENDF/B-VII.1 table,
interpolated according to ENDF recommendations for the use of the table. This is about the level of errors we expect
due to interpolation between points in the table, and also the accuracy claimed by Bosch and Hale. However, the
Bosch and Hale fit to the DDn reactivity is not nearly as accurate; presumably the ENDF/B-VII.1 DDn table has
changed since they published their fit.

Charged particle cross sections behave according to the Gamov asymptotic form at low energies, which gives the
scaling due to tunneling through the Coulomb barrier. A steepest descents approximation to the reactivity integral
Eq.(29) produces the asymptotic form for low temperature:

σv(T ) ∝ ξ2 exp(−3ξ), where (A1)

ξ = (TG/T )1/3 (A2)

TG =
π2m12

2

(
e2

~c

)2

.

Bosch and Hale use a parameterization suggested by Peres[15]:

σv(T ) = C1θT
−3/2(ξ′/m12)1/2 exp(−3ξ′), (A3)

ξ′ = (TG/θ)
1/3,

T

θ
= 1− C2T + C4T

2 + C6T
3

1 + C3T + C5T 2 + C7T 3
.

For the DDn reactivity, we find the following parameterization works much better than the Peres form:

σv(T ) = P1

(
1 + P2T

1/3 + P3T
2/3 + P4T

1 + P5T 1/3 + P6T 2/3

)
ξ2 exp(−3ξ). (A4)

This is a purely empirical fit; we have no theoretical justification for using a rational function in T 1/3. Unfortunately,
this parameterization does not fit the DT reactivity as well as the Peres form.

In addition to the ENDF/B-VII.1 cross section tables, we have also used the ENDL-2011 cross section tables, which
we use in radhydro simulations of laser fusion capsules. The ENDL and ENDF cross sections differ by a couple
percent. Table IV shows our best Peres parameters for the DT reactivity, for use in Eq.(A3). The ENDF fit differs
only slightly from the one given by Bosch and Hale. Table V shows our best Eq.(A4) fit parameters for the DDn
reactivity.

We turn next to the central moments of the kinetic energy distribution, Eq.(57). As Brysk[1] discussed, in the
non-relativistic limit,

TnKn(T ) = (−1)n
dn log(T 3/2σv)

d(1/T )n
. (A5)

We use Eq.(A5) to derive the asymptotic form for the Kn(T ). For the first two moments, the results are:

K1(T )→ ξ + 5/6

K2(T )→ 2ξ/3 + 5/6



19

m12 1124647 keV
TG 295.540 keV

ENDF/B VII.1 ENDL 2011
C1 1.173× 10−9 1.173× 10−9

C2 1.455× 10−2 1.166× 10−2

C3 7.383× 10−2 6.094× 10−2

C4 4.666× 10−3 4.661× 10−3

C5 1.357× 10−2 1.352× 10−2

C6 −1.076× 10−4 −1.134× 10−4

C7 1.304× 10−5 1.377× 10−5

Table IV: Eq.(A3) parameters for DT reactivity, where T is in keV and σv is in cm3/s. The fits are accurate to better than
0.25% from 0.4 to 100 keV, and better than 0.4% from 0.1 to 500 keV.

m12 937806 keV
TG 246.441 keV

ENDF/B VII.1 ENDL 2011
P1 3.400× 10−16 3.453× 10−16

P2 4.204× 10−1 1.783× 10−1

P3 −2.120× 10−2 7.794× 10−2

P4 5.959× 10−2 1.758× 10−2

P5 2.945× 10−1 2.123× 10−1

P6 4.671× 10−2 7.369× 10−3

Table V: Eq.(A4) parameters for DDn reactivity, where T is in keV and σv is in cm3/s. The fits are accurate to better than
0.1% from 0.1 to 500 keV.

However, taking derivatives of our reactivity fits loses accuracy, because the fits have a minimax character in which
they oscillate around the true reactivity. Direct fits to the moments are substantially more accurate, as well as easier
to compute. Replacing the 5/6 in the asymptotic forms by a simple rational function of T produces an economical
parameterization for the Kn(T ):

K1(T ) = ξ + F1(T ) (A6)
K2(T ) = 2ξ/3 + F2(T ) (A7)

Fn(T ) =
N0 +N1T +N2T

2 +N3T 3 +N4T 4

1 +D1T +D2T 2 +D3T 3 +D4T 4
(A8)

We select the parameters for a minimax fit to Kn(T ) calculated with the the full dPrel/dK from Eq.(29), using the
tabular cross sections σ(K∗1 ) from either ENDF or ENDL. For all fits except the DT K2(T ), N4 = D4 = 0 produces a
fit accurate to a few tenths of a percent up to temperatures well over 100 keV, which is comparable to interpolation
errors in the tables.

ENDF/B VII.1 ENDL 2011
N0 8.2771× 10−1 8.1857× 10−1

N1 1.4316× 10−1 1.4272× 10−1

N2 −4.4142× 10−3 −4.8217× 10−3

N3 9.4336× 10−6 1.1536× 10−5

D1 6.7860× 10−4 −2.7543× 10−3

D2 9.5200× 10−3 9.2859× 10−3

D3 2.6693× 10−6 5.1419× 10−6

Table VI: Eq.(A8) parameters for DT K1(T ), where T is in keV. The fits are accurate to better than 0.3% for ENDF and 0.4%
for ENDL below 500 keV.
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ENDF/B VII.1 ENDL 2011
N0 8.2430× 10−1 8.1838× 10−1

N1 1.6705× 10−1 1.3628× 10−1

N2 −1.8109× 10−2 −1.7565× 10−2

N3 −8.0725× 10−6 7.0575× 10−5

N4 3.6811× 10−7 7.4668× 10−8

D1 −9.8389× 10−2 −1.2737× 10−1

D2 2.0905× 10−2 2.2125× 10−2

D3 3.2518× 10−4 1.0949× 10−4

D4 −1.2273× 10−7 2.1816× 10−8

Table VII: Eq.(A8) parameters for DT K2(T ), where T is in keV. The ENDF fit is accurate to better than 0.3% below 300 keV;
the ENDL fit to better than 0.4% below 130 keV.

ENDF/B VII.1 ENDL 2011
N0 8.4722× 10−1 8.4600× 10−1

N1 9.9475× 10−3 9.2054× 10−2

N2 −1.9279× 10−3 2.9147× 10−4

N3 4.2125× 10−5 2.1762× 10−6

D1 −1.0892× 10−2 7.7368× 10−2

D2 −1.1420× 10−3 1.9492× 10−4

D3 3.1340× 10−5 1.6537× 10−6

Table VIII: Eq.(A6) parameters for DD K1(T ), where T is in keV. The fits are accurate to better than 0.1% below 500 keV.

ENDF/B VII.1 ENDL 2011
N0 8.4793× 10−1 8.4557× 10−1

N1 2.1394× 10−1 1.6161× 10−1

N2 1.1918× 10−2 −3.8010× 10−4

N3 4.5548× 10−4 5.5231× 10−6

D1 2.0441× 10−1 1.2545× 10−1

D2 8.9585× 10−3 −3.6591× 10−4

D3 3.3944× 10−4 4.2665× 10−6

Table IX: Eq.(A7) parameters for DD K2(T ), where T is in keV. The ENDF fit is accurate to better than 0.4% below 450 keV;
the ENDL fit to better than 0.1% below 500 keV.
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